
Reference Manual

ufdbGuard API
version 2.0.2

URLfilterDBURLfilterDB

Table of Contents
1 Introduction .. 4

1.1 Compatibility with Previous API Versions ... 4
1.2 Platforms ... 5
1.3 Latest Major Changes and Enhancements .. 5
1.4 Copyright ... 5
1.5 Support and Feedback ... 5

2 Prerequisites .. 6
2.1 Prerequisites for Development .. 6
2.2 Prerequisites for Production .. 6

3 API functions ... 7
3.1 Initialization and Termination ... 7

3.1.1 UFDBapi2Init ... 7
3.1.2 UFDBapi2createHandle ... 8
3.1.3 UFDBapi2destroyHandle ... 8
3.1.4 UFDBapi2setDebug ... 8
3.1.5 UFDBapi2setOptions ... 8
3.1.6 UFDBapi2setUploadDirectory ... 8
3.1.7 UFDBapi2initDBdirectory ... 9
3.1.8 UFDBapi2initDBaddUserDB ... 9
3.1.9 UFDBapi2loadDB .. 9
3.1.10 UFDBapi2unloadDB .. 9
3.1.11 UFDBapi2getCategoryProperties ... 10
3.1.12 UFDBapi2setCategoryProperties ... 10
3.1.13 UFDBapi2createThreadData .. 10
3.1.14 UFDBapi2destroyThreadData .. 11

3.2 Classification ... 11
3.2.1 UFDBapi2lookupDomain .. 11
3.2.2 UFDBapi2lookupURL ... 11

3.3 Management of Uncategorised URLs ... 12
3.3.1 UFDBapi2uploadUncategorisedURLs ... 12
3.3.2 UFDBapi2storeUncategorisedURLs .. 12
3.3.3 UFDBapi2setApplicationCounters ... 13
3.3.4 UFDBapi2setUploadMessage .. 13

3.4 Miscellaneous Functions ... 13
3.4.1 UFDBapi2dbTimestamp .. 13
3.4.2 UFDBapi2errorString ... 13
3.4.3 UFDBapi2licenseStatus .. 14
3.4.4 UFDBapi2getCounters ... 14
3.4.5 UFDBapi2version ... 15
3.4.6 Messages and Debugging ... 15

4 Implementation ... 15
4.1 Database Refresh ... 15
4.2 Examples ... 16
4.3 Using the ufdbGuard API Libraries .. 16

ufdbGuard API v2.0.2 Reference Manual, October 15, 2024 2

URLfilterDBURLfilterDB

5 Software Installation .. 17
5.1 Upgrading from a Previous Version ... 17
5.2 Installation Directory and Ownership ... 17
5.3 Unpack the Software Tarball .. 17
5.4 Compiler and Library Test .. 17
5.5 API Configuration File .. 18
5.6 API Helpers ... 18
5.7 Username and Password ... 18
5.8 Optional Client ID ... 18
5.9 Get Daily Updates ... 18

5.9.1 Exit Codes of ufdbapiupdatedb .. 19
5.9.2 Firewall and Proxy for ufdbapiupdatedb .. 19
5.9.3 Download URL Database ... 20

5.10 Upload Uncategorised URLs .. 20
5.11 Test the API ... 20

6 Installation on a Production System ... 21
6.1 Production Configuration File ... 21
6.2 Helper Programs .. 21
6.3 Directories in Production .. 21

7 User-defined URL Databases .. 21
7.1 Creating a URL Database .. 22
7.2 How URLs are matched against the URL Database ... 23

8 SafeSearch ... 23
8.1 SafeSearch of Google .. 23
8.2 Content Restriction on Youtube .. 24
8.3 SafeSearch of Bing .. 24
8.4 SafeSearch on Duckduckgo .. 24
8.5 SafeSearch on Ecosia .. 24
8.6 SafeSearch on Qwant .. 24
8.7 Safe Search Engines .. 24

9 Performance Tuning ... 25
9.1 Bind threads to cores ... 25
9.2 Use Hugepages .. 25

10 URL Categories ... 26

11 Privacy Policy .. 30

12 More Information ... 30

ufdbGuard API v2.0.2 Reference Manual, October 15, 2024 3

URLfilterDBURLfilterDB

1 Introduction
This manual is for an audience with a technical background and it is assumed that the reader is familiar
with the concepts of compilers and libraries and how to use them.

The ufdbGuard API, or just “API”, is a URL classifier. The API is implemented as a C library and header
files and can be used by any program written in C or C++ and any other programming language that is
capable of interfacing with C.

A URL classifier in a tool that given any URL is able to produce a list of URL categories. The ufdbGuard
API is designed to be used together with the URL database of URLfilterDB. In addition to the URL
database of URLfilterDB, one can use up to three user-defined URL databases, each can contain up to 200
URL categories.

A program that uses the API uses functions to load URL database categories, and perform URL lookups.
The performance depends on the CPU and especially on the performance of its cache. The API supports
pthreads for multithreading.

On an Intel Gold 61481 CPU with 20 cores and 40 threads the URL classifier reaches 80 million
classifications per second using all 40 threads and in dual CPU configuration 120 million classifications
per second. The high performance library uses a new database format which is optimized to be used on
Intel and AMD CPUs with advanced vector (AVX2) SIMD instructions2. Performance may vary with
CPU frequency, cache architecture and memory bandwidth. Ports to other CPU architectures are feasible.

The URL database is loaded into memory of the application that uses the API. All products of
URLfilterDB use an on-site URL database. Updates to the URL database are retrieved on the internet.

The API does not track clients of URLfilterDB nor its end users. See section 3.3 for more information.

Service providers and system integrators may register as a trial user at www.urlfilterdb.com to receive a
60-day trial license for the API and the URL database.

1.1 Compatibility with Previous API Versions
ufdbGuard API v2.x is not compatible with API v1.x. API v2.x uses a new database format and a set of
new API functions that combined made it possible to make a performance leap from version 1.x to 2.x.
Since the set of API functions is relatively small, porting an existing application from API v1.x to API
v2.x should be an effort that usually takes a few days to implement.

Experiences from previous API versions have given valuable insights in how a new API version could
improve performance. While on the same test system API v1.x scales well to 8 threads, API v2.x was
tested to scale well up to 40 threads and has a performance increase of 104x (compared with v1.35) to
176x (compared with v1.34).

The above also implies that .ufdb database files which were created with ufdbGenTable of API v1.x
must be regenerated using ufdbapigendb of API v2.x.

1 The Gold 6148 Skylake CPU is part pf the first generation of Intel Xeon Scalable Processors and was introduced
in 2017.

2 Intel supports AVX2 since 2013 and AMD supports AVX2 since 2015.

ufdbGuard API v2.0.2 Reference Manual, October 15, 2024 4

http://www.urlfilterdb.com/

URLfilterDBURLfilterDB

1.2 Platforms
The ufdbGuard API can be used on various Linux distros. Currently the supported distros are RHEL 8
and 9 and Ubuntu LTS 20.04 and 22.04. Ubuntu 24.04 will be supported before the end of 2024.

The ufdbGuard API is also available on the Intel DPDK platform and on Marvell's Octeon III CN7xxx
CPU.

Other platforms may be supported if a client shows interest.

1.3 Latest Major Changes and Enhancements
The major changes compared with v1.x is a speed improvement. The API supports multithreaded
applications. Since the URL database is read-only the API database query internals are lockless.

The category localnetwork is new for API v2.x and contains localhost and private network subnets.
API v2.0 supports IP subnets. For example, the URL database contains an entry '10.0.0.0/8' for the
category localnetwork.

1.4 Copyright
The ufdbGuard API software suite is entirely developed and owned by URLfilterDB B.V. with all rights
reserved. URLfilterDB B.V. holds the copyrights on the ufdbGuard API software suite. The ufdbGuard
API may only be used in combination with the URL database of URLfilterDB, hence a valid license to use
the URL database is required to gain the right to use the ufdbGuard API. Users of the API are free to
extend the URL database with user-defined URL categories.

The URL database is a commercial product and has a copyright by URLfilterDB. A license is required to
use the URL database which is defined in The Terms of Contract document that can be downloaded at the
website: www.urlfilterdb.com.

Parties that are interested in obtaining the content of the URL database or the source code of the API
without copyright restrictions may consider the purchase of the product “Technology Package”. See our
website for more details.

1.5 Support and Feedback
We welcome feedback from those who test our software. Feel free to send your questions and feedback to
the support desk: support@urlfilterdb.com.

ufdbGuard API v2.0.2 Reference Manual, October 15, 2024 5

mailto:support@urlfilterdb.com
http://www.urlfilterdb.com/

URLfilterDBURLfilterDB

2 Prerequisites
The ufdbGuard API runs on all flavors of Linux running on a CPU with Intel/AMD AVX2 SIMD
instructions. Intel supports AVX2 since 2013 when it introduced the Haswell micro-architecture and
AMD supports AVX2 since 2015.

The ufdbGuard API needs 8 GB disk space and 8 GB memory.

The ufdbGuard API uses a compressed database and requires the compression libraries zlib and zstd.

The ufdbGuard API has helper programs that communicate with the web server
updates.urlfilterdb.com. The helper programs need libcurl and OpenSSL libraries.

2.1 Prerequisites for Development
The ufdbGuard API is a library and can be linked with applications that use the C calling convention.
Most UNIX distributions come with the free GNU C compiler, gcc (see also gcc.gnu.org) or a native C
compiler which can be used to link the library with a 3rd party program. The API can also be used by
programs written in C++ and any programming language that interfaces with a C library.

In addition, the openssl development files, libcurl development files, zlib development files, zstd
development files, tar, make and install commands are required which are all included in most
UNIX distributions.

2.2 Prerequisites for Production
The helper applications of the API upload and download files and must be able to communicate with the
webserver updates.urlfilterdb.com using HTTPS on port 443. Firewalls or a proxy must allow
access to all IPv4 and IPv6 addresses of this webserver.

Openssl and libcurl shared libraries must be installed for the helper applications of the API. The helper
scripts use a shell (sh) and common commands like cat, wget, curl, tar, gunzip etc. The
command logger is used to send fatal errors to the system log.

Note that filter policies of the application that uses the API can easily be circumvented if on a filtered
network DNS over HTTPS or DNS over TLS is allowed. The URL database has a category dnsoverhttps
to assist with blocking these DNS requests. The URL database also comes with a plaintext file with IP
addresses of servers that are used for DNS over HTTPS which can be used to generate firewall rules on
filtered networks.

ufdbGuard API v2.0.2 Reference Manual, October 15, 2024 6

http://gcc.gnu.org/

URLfilterDBURLfilterDB

3 API functions
The ufdbGuard API is multithreaded and in almost all implementations uses the pthreads library.

The functions of the API library are divided in 4 categories: initialization and termination, classification,
management of uncategorised URLs and miscellaneous functions. In the src directory is a file called
api2test.c which serves as an example on how to use all API functions.

The API functions are in a single library libufdbapi2.a. The header file for the API is
ufdb-api2.h.

Almost all API functions return a status. All functions should return UFDB_API2_OK. If not, the
application must assume something does not work as expected and must act appropriately. See the header
file for all possible status values.

3.1 Initialization and Termination

Applications that use the API initialize by calling UFDBapi2Init. The application then creates a
handle which is used by most API functions. The application continues with specifying which database(s)
in which directory to use and by calling UFDBapi2loadDB the database(s) are loaded into memory.

Before calling the classification functions, the application calls the function
UFDBapi2getCategoryProperties to receive a list of all URL categories of all loaded databases.

Other functions may be called during the initialization but these are optional.

3.1.1 UFDBapi2Init

int UFDBapi2Init(const char * program, const char * programVersion, const
char * applicationConfigFile)

UFDBapi2Init initializes internal data structures of the API. It is mandatory to call UFDBapi2Init
before almost all other API functions are called and before any API parameter is set. UFDBapi2Init
returns UFDB_API_OK or an API error code.

UFDBapi2Init also parses the configuration file and extracts the values of the variables BIN_DIR,
DATABASE_DIR and UPLOAD_DIR. These variables must contain a full path and not use any other
variables. The parameter applicationConfigFile may be NULL in which case the default
file /etc/ufdbguard-api2.conf will be parsed.

The application configuration file is usually stored in the directory /etc/default or
/etc/sysconfig. All lines that do not start with BIN_DIR, DATABASE_DIR or UPLOAD_DIR are
ignored. The parser removes quotes from the parameter's value.

Applications typically call UFDBapi2Init, then optionally set global options and create a handle to use
with most API functions. The only function that may be called before UFDBapi2Init is
UFDBapi2setDebug.

On bare metal systems with a custom memory allocator the function UFDBapi2mallocInit must be
called before UFDBapi2Init.

Applications that use DPDK must call ret_eal_init before calling UFDBapi2Init.

Return values: UFDB_API2_OK, UFDB_API2_ERR_NULL, UFDB_API2_ERR_RANGE,
UFDB_API2_ERR_FATAL, UFDB_API2_ERR_NOFILE, UFDB_API2_ERR_NOMEM.

ufdbGuard API v2.0.2 Reference Manual, October 15, 2024 7

URLfilterDBURLfilterDB

3.1.2 UFDBapi2createHandle

typedef void * UFDBapi2handle;

int UFDBapi2createHandle(int handleOptions, UFDBapi2handle * h)

UFDBapi2createHandle allocates a private static memory buffer and returns a database handle. The
handle is used in calls to many API functions and therefore the handle must be created during initialization
of the application.

handleOptions is currently not used and must be set to 0.

Return values: UFDB_API2_OK, UFDB_API2_ERR_FATAL, UFDB_API2_ERR_RANGE.

3.1.3 UFDBapi2destroyHandle

int UFDBapi2destroyHandle(UFDBapi2handle h)

UFDBapi2destroyHandle deallocates the database handle and associated memory that was
previously allocated by UFDBapi2createHandle.

Return values: UFDB_API2_OK, UFDB_API2_ERR_NULL, UFDB_API2_ERR_INVALID_HANDLE.

3.1.4 UFDBapi2setDebug

int UFDBapi2setDebug(int debugLevel)

UFDBapi2setDebug sets the debug level of the API. The level should be between 0 and 9. This
function may be called at any time, even before UFDBapi2Init.
Return values: UFDB_API2_OK, UFDB_API2_ERR_RANGE.

3.1.5 UFDBapi2setOptions

int UFDBapi2setOptions(long options)

UFDBapi2setOptions sets a few options that modify the behavior of some functions. The following
values must be logically or-ed when used with UFDBapi2setOptions:

UFDB_API2_OPT_USE_URL_PARAMETERS parse URL parameters (everything after a ? in a
URL). Default is off.

UFDB_API2_OPT_AUTO_UPLOAD at appropriate times the API will try to upload files
with uncategorised URLs by creating a temporary file
and executing the ufdbapiupload helper program.
Default is off.

UFDB_API2_OPT_AUTO_CREATE_UPLOAD_FILE the API will generate files with uncategorised
URLs at appropriate times in the upload directory.
Default is off.

UFDB_API2_OPT_USE_HUGEPAGES hint Linux to use transparent hugepages for the in-
memory database with the madvise OS call.
Default is on.

Return values: UFDB_API2_OK, UFDB_API2_ERR_RANGE.

3.1.6 UFDBapi2setUploadDirectory

int UFDBapi2setUploadDirectory(UFDBapi2handle h, char * directory)

UFDBapi2setUploadDirectory tells the API to store files with uncategorised URL in a non-default
directory. The directory parameter must be an absolute path.

ufdbGuard API v2.0.2 Reference Manual, October 15, 2024 8

URLfilterDBURLfilterDB

Note that UFDBapi2Init parses the configuration file and initializes the upload directory with the value
of the UPLOAD_DIR variable.
Return values: UFDB_API2_OK, UFDB_API2_ERR_NULL, UFDB_API2_INVALID_HANDLE,
UFDB_API2_ERR_NOFILE, UFDB_API2_ERR_ERRNO.

3.1.7 UFDBapi2initDBdirectory

int UFDBapi2initDBdirectory(UFDBapi2handle h, char * dbDirectory, int flags)

UFDBapi2initDBdirectory tells the API to load the URL databases from a specific directory.
dbDirectory may be NULL which instructs the API to use the default database directory. If not
NULL, the dbDirectory parameter must be an absolute path.

Note that UFDBapi2Init parses the configuration file and sets the default database directory with the
value of the DATABASE_DIR variable, so in most cases one can simply use NULL for the
dbDirectory parameter.

This function must be called before UFDBapi2loadDB. This function must be called between 1 and 4
times.

flags is currently unused and must be set to 0 for compatibility with future version of the API.
Return values: UFDB_API2_OK, UFDB_API2_ERR_NULL, UFDB_API2_INVALID_HANDLE,
UFDB_API2_ERR_NOFILE, UFDB_API2_ERR_ERRNO, UFDB_API2_ERR_RANGE.

3.1.8 UFDBapi2initDBaddUserDB

int UFDBapi2initDBaddUserDB(UFDBapi2handle h, char * filename, int flags)

UFDBapi2initDBaddUserDB tells the API where to find a user-defined URL database. The user-
defined URL database can be generated with ufdbapigendb program.

The API supports a maximum of 4 databases; 1 database of URLfilterDB and 3 user-defined databases.
Each database can hold up to 200 categories and for highest performance an application should use as few
databases as possible. Performance is not reduced when many categories are used in a single database.

flags is currently unused and must be set to 0 for compatibility with future version of the API.
Return values: UFDB_API2_OK, UFDB_API2_ERR_NULL, UFDB_API2_INVALID_HANDLE,
UFDB_API2_ERR_NOFILE, UFDB_API2_ERR_RANGE.

3.1.9 UFDBapi2loadDB

int UFDBapi2loadDB(UFDBapi2handle h)

UFDBapi2loadDB instructs the API to load the URL databases into memory. UFDBapi2loadDB
always tries to load the URL database provided by URLfilterDB and optionally load up to 3 user-defined
URL databases. The functions UFDBapi2initDBdirectory and UFDBapi2initDBaddUserDB
must be called before UFDBapi2loadDB.
Return values: UFDB_API2_OK, UFDB_API2_ERR_NULL, UFDB_API2_INVALID_HANDLE,
UFDB_API2_ERR_NOFILE, UFDB_API2_ERR_RANGE, UFDB_API2_STATUS_DATABASE_OLD,
UFDB_API2_STATUS_DATABASE_EXPIRED, UFDB_API2_ERR_NOMEM.

3.1.10 UFDBapi2unloadDB

int UFDBapi2unloadDB(UFDBapi2handle h)

UFDBapi2unloadDB instructs the API to unload all previously URL databases associated with handle
h. At this moment the API will generate a file with uncategorised URLs or upload uncategorised URLs if
the options UFDB_API2_AUTO_CREATE_UPLOAD_FILE or UFDB_API2_AUTO_UPLOAD have been
set with UFDBapi2setOptions. All memory resources associated with the URL databases are released

ufdbGuard API v2.0.2 Reference Manual, October 15, 2024 9

URLfilterDBURLfilterDB

and handle h cannot be used any more to classify URLs. The handle h remains a valid handle that can be
reused or destroyed.
Return values: UFDB_API2_OK, UFDB_API2_ERR_NULL, UFDB_API2_INVALID_HANDLE.

3.1.11 UFDBapi2getCategoryProperties

typedef struct UFDBapi2categoryProperties
{
 uint16_t id;
 uint8_t filtered;
 const char * categoryName;
 void * userData; // optionally bind application data to category
} UFDBapi2categoryData;

int UFDBapi2getCategoryProperties(UFDBapi2handle h,
UFDBapi2categoryProperties ** data, int * numCategories)

UFDBapi2getCategoryProperties queries all URL categories of all URL databases associated
with handle h. The results are stored in UFDBapi2categoryProperties which is a read-only static
data structure. So each category of all (1-4) URL databases gets a unique integer ID, a category name
(string) and user-settable data userData.

The userData enables application to retrieve category-specific data with each URL classification query
and eliminates the need to map a category of the database(s) to an internal data structure of an application.
Applications that wish to receive category-specific userData first need to call
UFDBapi2getCategoryProperties (usually just after UFDBapi2loadDB) and then set
userData with UFDBapi2setCategoryProperties. After this, all successive calls to
UFDBapi2lookupDomain and UFDBapi2lookupURL return the category-specific userData as
part of the classification results.
Return values: UFDB_API2_OK, UFDB_API2_ERR_NULL, UFDB_API2_INVALID_HANDLE.

3.1.12 UFDBapi2setCategoryProperties

int UFDBapi2setCategoryProperties(UFDBapi2handle h,
UFDBapi2categoryProperties * data, int numCategories)

If the application likes to bind its own data with the categories of the URL database, it can call
UFDBapi2setCategoryProperties to set userData for all or a selected set of categories. The
userData that is set by UFDBapi2setCategoryProperties is returned to the application in
UFDBapi2lookupResult by the lookup functions UFDBapi2lookupURL and
UFDBapi2lookupDomain. The application is responsible for freeing memory that userData points
to when it destroys a handle or unloads a database.

The filtered field can be set to any non-zero value to remove this category from all query results. The
most common usage for this feature is to filter out subcategories.

The categoryName field is ignored by UFDBapi2setCategoryProperties.

UFDBapi2setCategoryProperties must be used to effectively set the properties userData and
filtered since just changing userData or filtered in the result of
UFDBapi2getCategoryProperties has no effect.
Return values: UFDB_API2_OK, UFDB_API2_ERR_NULL, UFDB_API2_INVALID_HANDLE,
UFDB_API2_ERR_RANGE.

3.1.13 UFDBapi2createThreadData

typedef void * UFDBapi2ThreadData;

int UFDBapi2createThreadData(UFDBapi2ThreadData * tData)

ufdbGuard API v2.0.2 Reference Manual, October 15, 2024 10

URLfilterDBURLfilterDB

Each program thread needs a memory area where various thread-specific data structures are stored.
UFDBapi2createThreadData creates such thread data and returns it in tData. tData is required
for functions like UFDBapi2lookupURL and UFDBapi2lookupDomain.
Return values: UFDB_API2_OK, UFDB_API2_ERR_NULL, UFDB_API2_ERR_RANGE.

3.1.14 UFDBapi2destroyThreadData

int UFDBapi2createThreadData(UFDBapi2ThreadData tData)

When a thread is terminated or will not use the API any more, it must call
UFDBapi2createThreadData to release the memory occupied by tData.

Return values: UFDB_API2_OK, UFDB_API2_ERR_NULL, UFDB_API2_INVALID_HANDLE.

3.2 Classification
A URL classification is done with either one of two functions. These functions return the URL
classification in UFDBapi2lookupResult.
#define UFDB_API2_MAX_RESULT_CATS 16
typedef struct UFDBapi2lookupResult
{
 int numCategories;
 uint16_t categories[UFDB_API2_MAX_RESULT_CATS];
 void * userData[UFDB_API2_MAX_RESULT_CATS];
} UFDBapi2lookupResult;

The categories field holds small integers that are identifiers which are the same as the categoryId
in UFDBapi2categoryData that was produced by UFDBapi2getCategoryProperties.

The userData field holds a pointer to application-specific data that was set with a call to the function
UFDBapi2setCategoryProperties.

3.2.1 UFDBapi2lookupDomain

int UFDBapi2lookupDomain(UFDBapi2handle h, UFDBapi2ThreadData tData, const
char * domain, int port, UFDBapi2lookupResult * result)

UFDBapi2lookupDomain queries the URL database(s) associated with handle h. The parameter
domain must point to a valid domainname with maximum 256 bytes (including terminating \0). If the
used port number is not known, the application must use 80. The result is stored in
UFDBapi2lookupResult where each userData is either NULL or the value that the application set
earlier with UFDBapi2setCategoryUserData.

Return values: UFDB_API2_OK, UFDB_API2_ERR_BAD_URL, UFDB_API2_ERR_NULL,
UFDB_API2_ERR_INVALID_HANDLE.

3.2.2 UFDBapi2lookupURL

UFDBapi2lookupURL(UFDBapi2handle h, UFDBapi2ThreadData tData, const
char * URL, int port, UFDBapi2lookupResult * result);

UFDBapi2lookupURL queries the URL database(s) associated with handle h. The parameter URL must
point to a valid URL with maximum 8192 bytes (including terminating \0). If the used port number is
not known, the application must use 80. The result is stored in UFDBapi2lookupResult where each
userData is either NULL or the value that the application set earlier with
UFDBapi2setCategoryUserData.

The parameter URL is parsed and the domainname, port, URL path and parameters are extracted from it.
Parsing also includes conversion of %-encoded characters and parsing parameters is relatively expensive.
Parsing a URL takes twice as much CPU time as the actual lookup of (domain,path,parameters) in the

ufdbGuard API v2.0.2 Reference Manual, October 15, 2024 11

URLfilterDBURLfilterDB

URL database. If possible, it is suggested not to use the option UFDB_API2_OPT_USE_URL_-
PARAMETERS.

Return values: UFDB_API2_OK, UFDB_API2_ERR_BAD_URL, UFDB_API2_ERR_NULL,
UFDB_API2_ERR_INVALID_HANDLE.

3.3 Management of Uncategorised URLs
The API maintains a list of URLs that are not yet part of the URL database, the uncategorised URLs. The
uncategorised URLs are invaluable data to keep the URL database up to date. It is required that the
uncategorised URLs is regularly uploaded to the servers of URLfilterDB where they are analyzed.

Unless agreed otherwise with a signed contract, each application that uses the API must ensure prompt
and regular upload of the uncategorised URLs. There are 3 methods to do this: application controlled
upload, a direct upload and an indirect upload. With the application controlled upload the application
makes an API call to generate the file and the application takes care of executing the ufdbapiupload
helper program to perform the actual upload. With the direct upload the API is instructed to automatically
generate files with uncategorised URLs and to execute the program ufdbapiupload to perform the
actual upload of the file. With the indirect upload the API is instructed to automatically generate files
with uncategorised URLs in the upload directory and then it is the responsibility of the application or a job
scheduler to upload these files with the help of the ufdbapiupload program.

The direct and indirect methods to upload uncategorised URLs is implemented by using option
UFDB_API2_OPT_AUTO_UPLOAD or UFDB_API2_OPT_AUTO_CREATE_UPLOAD_FILE set by
UFDBapi2setOptions. Note that if the flag UFDB_API2_OPT_AUTO_CREATE_UPLOAD_FILE is
used, the uncategorised URLs are not (yet) uploaded and a scheduled job must upload the generated files
at regular intervals.

The API does not track clients of URLfilterDB nor end users. Because of the transparency policy of
URLfilterDB, the uploaded files with uncategorised URLs are human-readable to prove that users and
clients are not tracked. The uploaded files only contain uncategorised URLs, statistical counters and some
system details. Applications control the generation and upload of the files that are uploaded to webservers
of URLfilterDB.

Applications may have application-specific counters or application-specific message that needs to be
included in the uploaded files. For this purpose the API functions x and y can be used.

3.3.1 UFDBapi2uploadUncategorisedURLs

int UFDBapi2uploadUncategorisedURLs(UFDBapi2handle h, const char * agent)

UFDBapi2uploadUncategorisedURLs instruct the API to perform the direct upload, i.e. produce a
temporary file and execute the ufdbapiupload helper program to perform the actual upload.

This function uses OS calls fork and execv followed by waitpid to execute the helper program.

Return values: UFDB_API2_OK, UFDB_API2_ERR_ERRNO, UFDB_API2_ERR_FATAL,
UFDB_API2_ERR_NULL, UFDB_API2_ERR_INVALID_HANDLE.

3.3.2 UFDBapi2storeUncategorisedURLs

int UFDBapi2storeUncategorisedURLs(UFDBapi2handle h, const char * agent,
const char * filename)

UFDBapi2storeUncategorisedURLs instruct the API to initiate the indirect upload and to generate
a file with uncategorised URLs. The filename may be an absolute path, or any other filename that will be
created in the upload directory, or may be NULL to instruct the API to generate a filename in the upload
directory by itself.

ufdbGuard API v2.0.2 Reference Manual, October 15, 2024 12

URLfilterDBURLfilterDB

It is the responsibility of the application or a job scheduler to upload these files with the help of the
ufdbapiupload program.

Return values: UFDB_API2_OK, UFDB_API2_ERR_ERRNO, UFDB_API2_ERR_NULL,
UFDB_API2_ERR_INVALID_HANDLE.

3.3.3 UFDBapi2setApplicationCounters

int UFDBapi2setApplicationCounters(
 UFDBapi2handle h,
 unsigned long num_errors,
 unsigned long num_fatal_errors,
 unsigned long num_blocked,
 unsigned long num_nxdomain,
 unsigned long num_cname,
 unsigned long num_views)

UFDBapi2setApplicationCounters may be used to include application-specific counters in
future upload files. Applications should use this function at most one time just before an upload file is
created.

Return values: UFDB_API2_OK, UFDB_API2_ERR_NULL, UFDB_API2_ERR_INVALID_HANDLE.

3.3.4 UFDBapi2setUploadMessage

int UFDBapi2setUploadMessage(UFDBapi2handle h, const char message[256])

UFDBapi2setUploadMessage may be used to include application-specific data to be included in the
upload files. The message data must be maximum 256 bytes (including terminating \0) representing
ASCII or UTF-8 characters and will be stripped from newlines before it is included in future upload files
as an HTTP header field X-ApplicationMessage.

Return values: UFDB_API2_OK, UFDB_API2_ERR_NULL, UFDB_API2_ERR_INVALID_HANDLE.

3.4 Miscellaneous Functions

3.4.1 UFDBapi2dbTimestamp

int UFDBapi2dbTimestamp(UFDBapi2handle h, char timestamp[32])

UFDBapi2dbTimestamp returns the date and time of the creation of the URL database.

Return values: UFDB_API2_OK, UFDB_API2_ERR_NOFILE UFDB_API2_ERR_NULL,
UFDB_API2_ERR_INVALID_HANDLE.

3.4.2 UFDBapi2errorString

const char * UFDBapi2errorString(int status)

UFDBapi2errorString returns a short explanatory string for a status that other API functions return.

Currently the API uses the following status codes.
UFDB_API2_OK

UFDB_API2_ERR_BAD_URL

UFDB_API2_ERR_NULL

UFDB_API2_ERR_NOFILE

UFDB_API2_ERR_READ

UFDB_API2_ERR_EXPR

UFDB_API2_ERR_RANGE

UFDB_API2_ERR_ERRNO

ufdbGuard API v2.0.2 Reference Manual, October 15, 2024 13

URLfilterDBURLfilterDB

UFDB_API2_ERR_NOMEM

UFDB_API2_ERR_IP_ADDRESS

UFDB_API2_ERR_OLD_TABLE

UFDB_API2_ERR_OUTDATED

UFDB_API2_ERR_INVALID_TABLE

UFDB_API2_ERR_INVALID_KEY

UFDB_API2_ERR_FULL

UFDB_API2_ERR_CKSUM_NOT_VALID

UFDB_API2_ERR_FATAL

UFDB_API2_ERR_DOES_NOT_RESOLVE

UFDB_API2_ERR_BAD_URL

3.4.3 UFDBapi2licenseStatus

int UFDBapi2licenseStatus(UFDBapi2handle h, const char ** licenseStatus)

UFDBapi2licenseStatus returns the license status as the return value and a copy of the content of
the file <databasedir>/license-status in licenseStatus. The license-status file is updated each time
that the URL database is downloaded with ufdbapiupdatedb. The license status inside the API is
updated each time UFDBapi2loadDB is called. A license warning is returned when the license will
expire in less than 60 days.

Return values: UFDB_API2_OK, UFDB_API2_ERR_NOFILE, UFDB_API2_LICENSE_WARNING,
UFDB_API2_LICENSE_EXPIRED, UFDB_API2_ERR_INVALID_HANDLE, UFDB_API2_ERR_NULL.

3.4.4 UFDBapi2getCounters

int UFDBapi2getCounters(
 UFDBapi2handle h,
 unsigned long * lookups,
 unsigned long * matches,
 unsigned long * https,
 unsigned long * uncategorised,
 unsigned long * bad_url)

The API has various counters which can be retrieved by calling UFDBapi2getCounters. All
parameters contain metrics and must be allocated by the caller. TPS15seconds contains the peak
number of queries per second (averaged over 15 seconds).

lookups has the number of calls to UFDBapi2lookupURL and UFDBapi2lookupDomain with
non-NULL parameters. matches has the total number of results categories for all queries URLs.
https has the total number of queries that had port 443 or had protocol https in the URL.
uncategorised has the number of URLs and domains that were not found in any category. bad_url
has the number of URLs and domains that were found too long or the API could not parse.

Counters are associated to an API handle h and are reset to zero when a file with uncategorised URLs –
that also includes the counters – is created.

A file with uncategorised URLs is created

• at the request of the application when it calls UFDBapi2uploadUncategorisedURLs or
UFDBapi2storeUncategorisedURLs, or

• when a handle h is destroyed by UFDBapi2destroyHandle and there are one or more
uncategorised URLs, or

ufdbGuard API v2.0.2 Reference Manual, October 15, 2024 14

URLfilterDBURLfilterDB

• when the application set one of the options UFDB_API2_OPT_AUTO_UPLOAD or
UFDB_API2_OPT_AUTO_CREATE_UPLOAD_FILE and the API encountered an event where it
needed to write the file.

To obtain meaningful counter values, an application should use UFDBapi2getCounters just before it
destroys a handle and just before it calls UFDBapi2uploadUncategorisedURLs or
UFDBapi2storeUncategorisedURLs. Applications can also call UFDBapi2getCounters in
between, for example every hour.

Return values: UFDB_API2_OK, UFDB_API2_ERR_NULL, UFDB_API2_INVALID_HANDLE.

3.4.5 UFDBapi2version

int UFDBapi2version(const char ** version)

UFDBapi2version returns the version of the API in version.

Return values: UFDB_API2_OK, UFDB_API2_ERR_NULL.

3.4.6 Messages and Debugging

The API has sometimes something to report and uses the functions ufdbLogMessage,
ufdbLogError and ufdbLogFatalError. Every application that uses the API must have these
functions and deal appropriately with the messages. The file ufdblogerror.c contains examples of
these functions. The prototypes of the logging functions are similar to printf.
void ufdbLogMessage(const char * format, ...)

void ufdbLogError(const char * format, ...)

void ufdbLogFatalError(const char * format, ...)

In case that the API needs debugging, one can set the global debug level to a value between 1 and 9 which
results in the API calling ufdbLogMessage with debug information.

Note that the API may find it necessary to call ufdbLogError or ufdbLogFatalError at any time,
so the application must be aware that this may happen.

4 Implementation

4.1 Database Refresh
The simple naive implementation to refresh the URL database is to unload the current database(s), and
then load the new database(s). This approach has a short time interval where no database is in memory
and hence no URL classifications can occur.

The way that in-memory database(s) are associated with a handle makes it possible to implement a
lockless database refresh by loading the new URL database(s) and then start using the new handle for the
new database(s). Wait a generous amount of time that guarantees that no single thread is querying the old
database(s) associated with the old handle, and then destroy the old handle and unload the old database(s).
This way applications can query the database(s) without interruption using a single global handle.

The lockless refresh has the following simplified pseudo code.
result = UFDBapi2createHandle(flags, &newHandle)

// set options, directories etc. for newHandle
result = UFDBapi2setCategoryUserData(newHandle, ...)

result = UFDBapi2loadDB(newHandle)

oldHandle = globalHandle
globalHandle = newHandle

ufdbGuard API v2.0.2 Reference Manual, October 15, 2024 15

URLfilterDBURLfilterDB

// auto-upload flag is set earlier or call UFDBapi2storeUncategorisedURLs(oldHandle, ...)
sleep(20)
result = UFDBapi2unloadDB(oldHandle)

Considering that a single thread can do millions of URL classifications per second, the sleep(20) is a
very generous time to wait.

Warning: there must be more available hardware threads than software threads that use
UFDBapi2lookupURL to be absolutely sure that after 20 seconds not a single thread will use the old
global handle while inside UFDBapi2lookupURL. This only happens if the OS schedules other threads
while one or more threads are in UFDBapi2lookupURL and does not get rescheduled for 20 seconds,
i.e. the system is severely overloaded.

An alternative hybrid approach is to load the new database(s) using a new handle and the application
organizes a synchronization between the database refresh thread and all classification threads, then does
the swap of globalHandle. and then unloads the old database(s).

4.2 Examples
See the source file api2test.c for a fully functional test program to test predefined URLs or URLs
from a specified file.

api2test.c can be downloaded with this link:
https://files.urlfilterdb.com/examples/api2test.c.

4.3 Using the ufdbGuard API Libraries
To use the ufdbGuard API one must include the appropriate header file and link with the libraries.

C and C++ source code must include ufdb-api2.h. and use compiler flags to search the directory
/opt/urlfilterdb/ufdbguard-api2/include for include files.

3rd party executables that include the ufdbGuard API must be linked against the API library, so the correct
linker flags to search for libraries in /opt/urlfilterdb/ufdbguard-api2/lib and include the
library ufdbapi2 must be used.

ufdbGuard API v2.0.2 Reference Manual, October 15, 2024 16

https://files.urlfilterdb.com/examples/api2test.c

URLfilterDBURLfilterDB

5 Software Installation
Follow all steps outlined in the following subsections to install the software and URL database, and verify
its installation.

5.1 Upgrading from a Previous Version
ufdbGuard API v2.x is incompatible with API v1.x. The files of API v2.0 are installed in different
directories that the files of API v1.x so API v2.0 and API v1.x can be installed side by side.

The file /opt/urlfilterdb/ufdbguard-api2/etc/CHANGELOG contains a short description of
all changes between releases.

5.2 Installation Directory and Ownership
The files of the ufdbGuard API are installed in /opt/urlfilterdb/ufdbguard-api2. In this
manual, the word TOPDIR refers to the top level installation directory for the ufdbGuard API. Make sure
that the installation directory has sufficient space for the URL database.

The URL database is in the directory /opt/urlfilterdb/ufdbguard-api2/urldatabase.

5.3 Unpack the Software Tarball
The tar file that contains the ufdbGuard API software installs files in the directory
/opt/urlfilterdb/ufdbguard-api2 and subdirectories.

Unpack the ufdbGuard tar file in the directory /. Note that when a new version is installed, all previous
files all overwritten and it is recommended to save or copy files in
/opt/urlfilterdb/ufdbguard-api2/etc. Untar the tarball:
cd /

tar xzf .../ufdbGuard-API-2.0.2.tar.gz

chown -R bin:bin /opt/urlfilterdb/ufdbguard-api2

The subdirectories bin, etc, lib, urldatabase, src and include have now been created.

Special builds, for example the library for the MIPS OCTEON III platform, appear in subdirectories, e.g.
/opt/urlfilterdb/ufdbguard-api2/octeon.

5.4 Compiler and Library Test
To verify that a compatible compiler and all required libraries are present, compile the test application
api2test:
$ cd /opt/urlfilterdb/ufdbguard-api2/src

$ make

The produced file is api2test.

The most common error is that the development packages for openssl, zlib and zstd are not installed. For
most operating systems, one can find the packages openssl-devel and zstd-devel on the installation media.
Note that each Linux distribution uses different package names and you may find that openssl-devel has
an other similar name like libssl-dev. Likewise, the bzip2-devel package may be called libbz-dev. Refer
to the Operating System manual on how to install additional packages.

Make sure that this test works and ask for assistance from URLfilterDB in case issues cannot be resolved.

ufdbGuard API v2.0.2 Reference Manual, October 15, 2024 17

URLfilterDBURLfilterDB

5.5 API Configuration File
The configuration file for the API and the helper programs is /etc/ufdbguard-api2.conf. A
template for the configuration file is in /opt/urlfilterdb/ufdbguard-api2/etc. The
configuration file must be installed on each system that uses the ufdbGuard API.

The template assumes that all used files are in /opt/urlfilterdb/ufdbguard-api2 and its
subdirectories and this may be changed to any path by changing the variables in /etc/ufdbguard-
api2.conf.

5.6 API Helpers
ufdbapi2download is a program that opens an HTTPS socket with updates.urlfilterdb.com
and downloads URL database updates and the license-status file.

ufdbapiupdatedb is a shell script that executes the ufdbapi2download helper program.

ufdbapi2uploadurls is a helper program that opens an HTTPS socket with
updates.urlfilterdb.com and uploads files with uncategorised URLs and statistics.

ufdbapiupload is a shell script that uses curl to perform the actual upload.

See sections 5.9 and 5.10 for more details about the helper programs.

5.7 Username and Password
The helper programs use a username and password when they connect to
updates.urlfilterdb.com. The username and password are provided by URLfilterDB. The
password is encrypted and converted to a base64-coded string and looks like “e:OGzyF8zNbryTKg==”.

The username and password must be assigned to the variables DOWNLOAD_USER and
DOWNLOAD_PASSWORD in the configuration file. Alternatively, the password may be stored in a
separate file and the file name assigned to the variable PASSWORD_FILE.

5.8 Optional Client ID
Resellers that use a single generic username for the license on its client systems must include a unique
client identifier in the file /etc/ufdbguard.clientid. The first line of the file must contain the
unique identifier without quotes or trailing spaces.

5.9 Get Daily Updates
The script ufdbapiupdatedb takes care of downloading a new version of the URL database. The
script is in /opt/urlfilterdb/ufdbguard-api2/bin. It is the responsibility of the system
integrator to integrate ufdbapiupdatedb in its processes such that after ufdbapiupdatedb has
downloaded a fresh URL database, the application loads the new URL database.

The ufdbapiupdatedb script needs the username and password that you received when the (trial)
license was received which can be defined in a system configuration file:
$ vi /opt/urlfilterdb/ufdbguard-api2/etc/ufdbguard
...
DOWNLOAD_USER=”lic99999”
DOWNLOAD_PASSWORD=”e:OGzyF8zNbryTKg==”
Users that evaluate the URL database may use the demoXX username and corresponding password.

ufdbGuard API v2.0.2 Reference Manual, October 15, 2024 18

URLfilterDBURLfilterDB

Test the ufdbapiupdatedb script with the verbose option:
$ ufdbapiupdatedb –v

The output should be similar to:
http_proxy is not set: no proxy is used for downloads

Downloading the current database...

<retrieving URL database>

new database downloaded:

-rw-r--r-- 1 root root 5121312 May 5 14:04 .../urldatabase-latest.tar.gz

Unpacking the database...

The downloaded database is installed in directory
/opt/urlfilterdb/ufdbguard-api2/urlfilterdb and its subdirectories

Sending HUP signal to the ufdbguardd daemon to load new configuration...

URL database creation date: Fri Oct 18 13:54:47 CEST 2024

<retrieving license status>

URL database license status: OK

done.

5.9.1 Exit Codes of ufdbapiupdatedb

To monitor URL database updates, ufdbapiupdatedb has a defined set of exit codes.

code explanation

0 all OK

1 version warning; most likely there is a new version of the API

2 license expiration warning: less than 2 months to renew license

3 license expired: a license renewal is required immediately

11 configuration error

12 temporary file error

21-40 exit code of ufdbapiupdatedb is exit code of ufdbapi2download + 20.
ufdbapi2download is the helper program that downloads the new URL database from
the servers of URLfilterDB.

41-60 exit code of ufdbapiupdatedb is exit code of gunzip + 40. gunzip uncompresses the
downloaded URL database. There may be an issue with file system space.

61-80 exit code of ufdbapiupdatedb is exit code of tar + 60. tar unpacks the downloaded
URL database. There may be an issue with file system space.

In case of an error, it is advised to run ufdbapiupdatedb -v from the command line to have more
feedback about what is going wrong. License expiration warnings are also issued bu ufdbguardd.

5.9.2 Firewall and Proxy for ufdbapiupdatedb

ufdbapiupdatedb downloads the URL database and obviously needs access to the servers of
URLfilterDB. Firewall rules may need to be modified to provide access to

ufdbGuard API v2.0.2 Reference Manual, October 15, 2024 19

URLfilterDBURLfilterDB

updates.urlfilterdb.com. See section 5.9.3 for the URL that is used to download the URL
database.

A proxy can be used to download the URL database: edit /opt/urlfilterdb/ufdbguard-
api2/etc/ufdbguard-api2.conf and assign the appropriate values to the variables
https_proxy, PROXY_USER and PROXY_PASSWORD.

5.9.3 Download URL Database

ufdbapiupdatedb is a script that does some basic checks and then executes the helper program
ufdbapi2download that does the actual download from the website updates.urlfilterdb.com
using HTTPS on port 443.

5.10 Upload Uncategorised URLs
ufdbapiupload is a shell script that does some basic checks and executes curl for the actual upload.

curl is a program that creates an HTTPS connection to updates.urlfilterdb.com and uploads
all files with uncategorised URLs that it can find in the upload directory. After the upload, the files with
uncategorised URLs are either removed or renamed. By default files are removed but if it is desired to
keep the renamed and uploaded files a configuration /etc/ufdbguard-api2.conf can be used to
rename the files. To rename the files one can set the variable RENAME_UPLOADED_FILES to yes. If
set to yes, the renamed files have the prefix 'uploaded.'.

Uncategorised URLs are uploaded to servers of URLfilterDB to be analyzed. Files with uncategorised
URLs are made at the request of the application that uses the ufdbGuard API. So it is the responsibility of
the programmer and application manager to make sure that the files can be created and will be uploaded.
See section 3.3 for more information.

5.11 Test the API
When the test programs are compiled and linked without errors and the URL database has been
downloaded, the correct working of the API can be tested by executing apitest and urlcats.
$ cd /opt/urlfilterdb/ufdbguard-api2/src

$ make

$./api2test

ufdbGuard API v2.0.2 Reference Manual, October 15, 2024 20

URLfilterDBURLfilterDB

6 Installation on a Production System
On a production system only a few files are required. Besides the application that is linked with the static
ufdbGuard API library, one configuration file and a handful of helper programs are installed and
directories for database files and upload files need to be created.

Scheduling a database refresh and upload of uncategorised URLs is required but not further explained
here.

6.1 Production Configuration File
The configuration file is /etc/ufdbguard-api2.conf. Helper scripts and programs use this file
and it must be installed. A template for this file is provided; see section 5.5 for more information.

At least the variables DOWNLOAD_USER and DOWNLOAD_PASSWORD must be assigned in the
configuration file.

The template file has a comment for each variable that can be set and one can change the database
directory, directory for helper programs, web proxy parameters and more. The template file is in
/opt/urlfilterdb/ufdbguard-api2/etc/ufdbguard2-api2.conf and contains the
variables DOWNLOAD_USER. DOWNLOAD_PASSWORD, PASSWORD_FILE, DATABASE_DIR,
UPLOAD_DIR, BIN_DIR and a few other variables that are optional. The variables ending with _DIR
have default values that start with /opt/urlfilterdb/ufdbguard-api2/ and may be changed if
desired – or course the contents of these directories must move to the appropriate directories.

6.2 Helper Programs
The API helper programs are scripts and executables that download the URL database and upload
uncategorised URLs. The directory for the helper programs is set in the variable BIN_DIR in the
configuration file. All helper programs must be installed in the same directory. The helper programs are:
ufdbapigendb, ufdbapiupdatedb, ufdbapiupload.

6.3 Directories in Production
The following directories are required on production systems. The directories are referred to with the
corresponding variable in the configuration file.

BIN_DIR helper programs

DATABASE_DIR URL database(s) and license status file

UPLOAD_DIR files with uncategorised URLs

7 User-defined URL Databases
The URL database of URLfilterDB is a read-only database and it is not possible to modify it in any way.
However, in cases where additions or exceptions to the categories of URLfilterDB are desired, an
administrator can create one user-defined URL database with user-defined URL categories. A user-
defined databases can have a maximum of 200 categories.

ufdbGuard API v2.0.2 Reference Manual, October 15, 2024 21

URLfilterDBURLfilterDB

7.1 Creating a URL Database
A databases consists of one or more categories where all data of all categories is merged into a single
database file with a .ufdb suffix. To create a database one needs to create a directory hierarchy where
under the top directory subdirectories exist for each user-defined category. Inside each category directory
it is mandatory to have a domains file with at least one domain, and optional urls file where each line
has a full URL, and an optional ips file where each line has an IPv4 or IPv6 address or subnet.

A common case of a user-defined URL category is where one wants to ensure access to its own websites
and websites of 3rd parties that are used for normal activities. To grant users access to the company
websites, the URL company.com needs to be added to a whitelist category, for example alwaysallow.

Edit the file that contains the extra sites that should always be allowed. For example:
$ cd /opt/urlfilterdb/clientdb1

$ vi alwaysallow/domains

Add the appropriate URLs and always remove a leading www.:
company.com
api.partner.net
payments.bank.com

Note that ufdbapigendb will always remove any www. prefix automatically.

Additional domains can be added according to the local internet usage policy. For example, if news
should be blocked but access to CNN allowed, then cnn.com should be added also. Alternatively, when
news should be blocked but Google news allowed, news.google.com and google.com/news
should be added.

ufdbGuard only uses proprietary database files, so generate an .ufdb database file from the ASCII files
with ufdbapigendb. The ufdbapigendb command accepts various command line flags:

-T topdir topdir is the top of the directory tree that contains the user-defined database

-c category-dir category-dir is the name of the subdirectory that contains a URL category. The
-c option may be repeated 200 times.

-o filename specify the output filename

-q be quiet – suppress many warnings about URLs

-z use zstd compression. May be repeated 3 times to increase compression level.

-Z use zlib compression

-D debug mode

$ cd /opt/urlfilterdb/ufdbguard-api2/urldatabase

$ ufdbapigendb -o clientdb1 -T /opt/urlfilterdb/clientdb1 -c alwaysallow

The above command generates a database file with one category in the file
/opt/urlfilterdb/ufdbguard-api2/urldatabase/clientdb1.ufdb and this command
must be repeated each time that the domains file is changed.

Do not forget to manage the categories of the user-defined database(s) in the application that uses the API,
i.e. the application should load the user-defined database(s).

ufdbGuard API v2.0.2 Reference Manual, October 15, 2024 22

URLfilterDBURLfilterDB

7.2 How URLs are matched against the URL Database
The ufdbGuard API uses an algorithm to match a URL against the entries in the tables of the URL
database. The algorithm uses the following logic.

1. Port numbers and embedded usernames and passwords are ignored. So a URL like
john:secret@example.com:8080/foo is simplified to example.com/foo.

2. If a URL table contains an entry with a domainname example.com it matches all URLs that
contain example.com including subdomains, and matches URLs like example.com/foo.html,
www.example.com and secure.example.com.

3. If a URL table contains an entry with a domainname with a "pipe tag", e.g. | .example.com , it
matches all URLs that contain the domain example.com but not subdomains (*). This entry
matches URLs like example.com/foo and www.example.com.

4. If a URL table contains an entry with a domainname and a path, e.g. "example.com/foobar" it
matches all URLs that have the domain example.com (but not subdomains) and have a URL path
that starts with the given URL path, so its matches www.example.com/foobar.html and does not
match sub.example.com/foobar.

5. If a URL table contains an entry with a domainname, a path and a pipe tag, e.g.
example.com/foobar|, it matches all URLs that have the domain example.com (but not
subdomains) and have a URL path equal to the given path, so it matches
www.example.com/foobar and does not match www.example.com/foobar.html.

6. If a URL table has an entry with parameters, the URL is matched if it contains all parameters of
the table entry in any order. For example, if a table contains example.com/watch?p1=foo, the
URLs www.example.com/watch?p1=foo and www.example.com/watch?p0=x&p1=foo&p2=bar
are matched.

(*) “www” and “www0”...“www99” are not considered subdomains.

8 SafeSearch
The API itself does not enforce 'safe' searching on search engines. This section describes how safe
searches can be enforced on popular search engines and Youtube.

In the following subsections a CNAME DNS record can be configured to enforce safesearch for some
search engines. This is usually done with the Response Policy Zones (RPZ) feature of the DNS server.

Note that DNS RPZ policies and filter policies of the application that uses the API can be circumvented if
on the filtered networks DNS over HTTPS or DNS over TLS is allowed.

8.1 SafeSearch of Google
Google offers an option to enforce SafeSearch which is explained on their website:
https://support.google.com/websearch/answer/186669?hl=en option 3 and configure DNS to have a
CNAME record entry for www.google.com pointing to forcesafesearch.google.com. Also make CNAME
entries for Google on popular TLDs in your region, e.g. www.google.de, www.google.es,
www.google.com.br etc.

ufdbGuard API v2.0.2 Reference Manual, October 15, 2024 23

http://www.google.com.br/
http://www.google.es/
http://www.google.de/
https://support.google.com/websearch/answer/186669?hl=en

URLfilterDBURLfilterDB

8.2 Content Restriction on Youtube
Youtube content also can be restricted using DNS. Youtube uses the same mechanism as Google and is
explained here: https://support.google.com/youtube/answer/6214622. To implement it one needs to add a
CNAME restrict.youtube.com for the following domains: www.youtube.com, m.youtube.com,
youtubei.googleapis.com, youtube.googleapis.com and www.youtube-nocookie.com.

8.3 SafeSearch of Bing
Bing offers an alternative to enforce SafeSearch which is explained on their website:
http://help.bing.microsoft.com/#apex/18/en-US/10003/0 and and one can configure the DNS server to
have a CNAME record entry for www.bing.com pointing to strict.bing.com.

8.4 SafeSearch on Duckduckgo
Duckduckgo also offers safesearch enforcement which is explained on their website:
https://duckduckgo.com/duckduckgo-help-pages/features/safe-search/ and supports a DNS-based filter
with a CNAME record entry for duckduckgo.com pointing to safe.duckduckgo.com.

8.5 SafeSearch on Ecosia
Ecosia also has started to offer safesearch enforcement via DNS which is explained on their website:
https://ecosia.helpscoutdocs.com/article/562-how-to-enforce-safe-search-at-your-organization and
supports a CNAME record entry for www.ecosia.org to strict-safe-search.ecosia.org.

8.6 SafeSearch on Qwant
Qwant has two options to enforce safesearch: redirecting www.qwant.com with a CNAME record to
www.qwantjunior.com and redirecting api.qwant.com to safeapi.qwant.com.

8.7 Safe Search Engines
There is a number of search engines that always filter adult content and lack an option to disable the filter.
The probably incomplete list of search engines that always filter content is:
blinde-kuh.de
favoes.com
fragfinn.de
helles-koepfchen.de
kiddle.co
kidzsearch.com
searchmixer.com
vinden.nl
qwantjunior.com
yougl.de

There are other search engines3 that try to filter all adult content but fail, e.g. they show adult content for
the search term “cougar stepson” or “hot cougar”.

3 findarios.com nakoona.com such.de woooom.com xuve.com

ufdbGuard API v2.0.2 Reference Manual, October 15, 2024 24

https://ecosia.helpscoutdocs.com/article/562-how-to-enforce-safe-search-at-your-organization
https://duckduckgo.com/duckduckgo-help-pages/features/safe-search/
http://help.bing.microsoft.com/#apex/18/en-US/10003/0
https://support.google.com/youtube/answer/6214622

URLfilterDBURLfilterDB

9 Performance Tuning

9.1 Bind threads to cores
Binding programming threads to CPU threads/cores increases CPU L1/L2 cache efficiency and total
performance is increased by a few percent.

9.2 Use Hugepages

Total performance is increased by a few percent if the application can use hugepages. The number of data
TLB load misses can be reduced significantly by using hugepages (2MB) instead of regular pages (4K).
CPUs have an average of 1500+ TLB entries for virtual memory mapping and can address 1500 * 2 MB =
3 GB without TLB misses. For each TLB miss the CPU causes a fault where the Linux kernel has to fill
the TLB with a new entry which is a relatively time consuming operation that should be avoided if
possible. Considering that the URL database of API v2.x currently fits entirely in 3 GB and that the API
can hint the Linux kernel to use transparent hugepages (THP) with the madvise OS call, optimal
performance is possible.

ufdbGuard API v2.0.2 Reference Manual, October 15, 2024 25

URLfilterDBURLfilterDB

10 URL Categories
The URL database of URLfilterDB uses the following URL categories. Some categories have
subcategories. URLs in a subcategory are also in the parent category.

Ads

Websites with advertisements, traffic trackers, user behavior analysis and web page counters.

AI Chat

Websites where people can chat with an AI bot. Chat bots for education, business and customer support
etc. are not included. Websites with AI friends and unrestricted chat are in the adult category.

Parkeddomain

Websites that are parked. Usually parked domains are expired domains or domains for sale and managed
by domain brokers. Many parked sites have ads and some domain brokers use ad brokers that redirect
users to adult, gambling or scam sites.

P2P

P2P stands for point-to-point file sharing. The P2P category contains websites that can be used directly or
indirectly to upload, download and share files. Most P2P sites have copies of movies, adult content,
malware, warez and entertainment, and much of this content violates copyright.

Proxies

Sites that can be used to download content of other sites, URL rewriting sites and VPNs. Proxies are
commonly used in an attempt to circumvent a URL filter and it is recommended to always block proxies.

Adult

Websites suitable for adults only (not only sexual content).

Malware

Websites that contain or redirect to viruses or malware.
NOTE: this URL category is not a replacement for a antivirus tool.

Warez

Websites with illegal software, illegal software codes, hacker’s sites, warez and cracks.

Toolbars

Websites for toolbars of browsers. A toolbar is an extension to a web browser that may violate your
privacy or make private files public.

Illegal

Websites explaining how to perform Illegal activities.

Arms

Sites with firearms and toys that look like firearms.

ufdbGuard API v2.0.2 Reference Manual, October 15, 2024 26

URLfilterDBURLfilterDB

Violence

Websites about violent behavior.

Gambling

Websites offering gambling opportunities.

Drugs

Websites about hard drugs.

Webmail

Email accessible with a web browser. Webmail of business sites is not included while webmail of ISPs is
included in this category.

Dating

Websites about love, dating, romantic poetry, and friendship.

Chat

Websites to use IRC and chat. Subcategories exist for AIM, Ebuddy, Facebook Chat, Google Talk, MSN
Messenger, Oovoo, Skype and Yahoo Chat.

Forum

Websites where people exchange non-business information in a forum.

Private

Blogs and sites of private persons.

Webtv

sites with a audiovisual streams or television-like streams.

Webradio

sites with a music streams or radio-like streams.

Dailymotion

videos of dailymotion

Vimeo

videos of Vimeo

Youtube

videos of Youtube

Audio-Video

Audio and video streams.

ufdbGuard API v2.0.2 Reference Manual, October 15, 2024 27

URLfilterDBURLfilterDB

Sports

Websites related to sports including sports sections of news sites, fans of sports, sites about actively doing
a sport.

Finance

Websites of banks, fintech, crypto and insurance companies.

Trading

Websites about stock markets and trading systems as well as websites related to investments.

Jobs

Websites about and for job applications.

Games

Websites to play games and information about gaming.

Entertainment

Entertainment, lifestyle, hobby, arts, museums, fashion, electronic cards, magazines, horoscopes, desktop
wallpapers, clip art, photos, portals, events, fan sites, baby-related, child sites, other sites for interest of
private persons that are not related to business.

Food

Websites of restaurants and sites with recipes. Fast food chains, however, are part of the category shops.

Religion

Websites related to any religion.

Shops

Websites with shops, price comparisons, and auctions aimed at consumers (b2b is excluded).

Travel

Websites about travel agencies, airliners, tourism sites, hotels, holiday resorts.

News

Websites providing news and opinions.

External Applications

Free web-based document editors, spreadsheet applications, desktops, groupware, etc. where “internal”
documents can be stored on external servers.

Social Networks

Sites that focuses on building and reflecting of social networks or social relations among people.
Subcategories exist for Badoo, Facebook and Twitter.

ufdbGuard API v2.0.2 Reference Manual, October 15, 2024 28

URLfilterDBURLfilterDB

DNSoverHTTPS

IP addresses and domainnames of services for DNS lookups over HTTPS. This category has also a text
file iplist with all IP addresses which can be used to configure a firewall.

Alternate DNS

There is a collection of alternative DNS systems with alternative TLDs like .coin, .libre, .bazar and .geek.
See https://www.opennic.org for more information.
The DNS servers use ports 53, 443 and alternate ports like 8443, 5335 and 5353. This category has also a
text file iplist with all IP addresses which can be used to configure a firewall.

Dynaddress

Websites with a dynamic IP address.

Extappl

Websites that deal with off-line documents and data.

Education

Websites of schools, universities and educational institutes.

Health

Websites of doctors, clinics, diseases and other health-related sites.

Qmovies

Websites which contain or link to movies with probable copyright infringement.

Searchengine

URLs used by search engines.

Checked

URLs that are verified by URLfilterDB not to be part of any other category. This category contains
business sites, governmental sites and useful sites for the general public. This URL category is also used
by the ufdbGuard API to track uncategorized URLs and should always be loaded.

Localnetwork

The category localnetwork is new for API v2.x and contains localhost and private network subnets.

The classification rules for URL database are based on user intent and classification is from the point of
view of a business. So, a website that has a business use, is by default part of the category “checked”. For
example, access to a website to sell equipment for building constructors is in category “checked” and
hence is not part of the category “shops”. Also governmental sites, and all sites for basic human needs
like electricity and water are in the URL category “checked”.

The nature of the content is more important than the strict definition, so an advertisement with a nude
person is classified as adult rather than advertisement (although may be included in both categories), and a
forum about games is classified as games.

ufdbGuard API v2.0.2 Reference Manual, October 15, 2024 29

https://www.opennic.org/

URLfilterDBURLfilterDB

The general impression is also taken into account when a site is categorized. For example, most buyers at
ebay.com are consumers rather than business users and therefore ebay.com is considered a shop for
consumers and part of the shops category.

URLs may be part of one or more categories, e.g. www.usatoday.com is news while
www.usatoday.com/sport is both news and sports.

11 Privacy Policy
The privacy policy of URLfilterDB is stated on the website: www.urlfilterdb.com/privacystatement.html.

12 More Information
The support desk can answer all questions. Send an email to support@urlfilterdb.com to ask a question or
send your feedback.

ufdbGuard API v2.0.2 Reference Manual, October 15, 2024 30

mailto:support@urlfilterdb.com
http://www.urlfilterdb.com/privacystatement.html

	1 Introduction
	1.1 Compatibility with Previous API Versions
	1.2 Platforms
	1.3 Latest Major Changes and Enhancements
	1.4 Copyright
	1.5 Support and Feedback

	2 Prerequisites
	2.1 Prerequisites for Development
	2.2 Prerequisites for Production

	3 API functions
	3.1 Initialization and Termination
	3.1.1 UFDBapi2Init
	3.1.2 UFDBapi2createHandle
	3.1.3 UFDBapi2destroyHandle
	3.1.4 UFDBapi2setDebug
	3.1.5 UFDBapi2setOptions
	3.1.6 UFDBapi2setUploadDirectory
	3.1.7 UFDBapi2initDBdirectory
	3.1.8 UFDBapi2initDBaddUserDB
	3.1.9 UFDBapi2loadDB
	3.1.10 UFDBapi2unloadDB
	3.1.11 UFDBapi2getCategoryProperties
	3.1.12 UFDBapi2setCategoryProperties
	3.1.13 UFDBapi2createThreadData
	3.1.14 UFDBapi2destroyThreadData

	3.2 Classification
	3.2.1 UFDBapi2lookupDomain
	3.2.2 UFDBapi2lookupURL

	3.3 Management of Uncategorised URLs
	3.3.1 UFDBapi2uploadUncategorisedURLs
	3.3.2 UFDBapi2storeUncategorisedURLs
	3.3.3 UFDBapi2setApplicationCounters
	3.3.4 UFDBapi2setUploadMessage

	3.4 Miscellaneous Functions
	3.4.1 UFDBapi2dbTimestamp
	3.4.2 UFDBapi2errorString
	3.4.3 UFDBapi2licenseStatus
	3.4.4 UFDBapi2getCounters
	3.4.5 UFDBapi2version
	3.4.6 Messages and Debugging

	4 Implementation
	4.1 Database Refresh
	4.2 Examples
	4.3 Using the ufdbGuard API Libraries

	5 Software Installation
	5.1 Upgrading from a Previous Version
	5.2 Installation Directory and Ownership
	5.3 Unpack the Software Tarball
	5.4 Compiler and Library Test
	5.5 API Configuration File
	5.6 API Helpers
	5.7 Username and Password
	5.8 Optional Client ID
	5.9 Get Daily Updates
	5.9.1 Exit Codes of ufdbapiupdatedb
	5.9.2 Firewall and Proxy for ufdbapiupdatedb
	5.9.3 Download URL Database

	5.10 Upload Uncategorised URLs
	5.11 Test the API

	6 Installation on a Production System
	6.1 Production Configuration File
	6.2 Helper Programs
	6.3 Directories in Production

	7 User-defined URL Databases
	7.1 Creating a URL Database
	7.2 How URLs are matched against the URL Database

	8 SafeSearch
	8.1 SafeSearch of Google
	8.2 Content Restriction on Youtube
	8.3 SafeSearch of Bing
	8.4 SafeSearch on Duckduckgo
	8.5 SafeSearch on Ecosia
	8.6 SafeSearch on Qwant
	8.7 Safe Search Engines

	9 Performance Tuning
	9.1 Bind threads to cores
	9.2 Use Hugepages

	10 URL Categories
	11 Privacy Policy
	12 More Information

